\[\begin{aligned}v'_a=v_a+\Delta v_a\\ v'_b=v_b+\Delta v_b \end{aligned}\]
\[\begin{aligned}v'_a=v_a-\frac{J}{m_a}\\ v'_b=v_b+\frac{J}{m_b} \end{aligned}\]
\[\begin{aligned}v'_a=v_a-\frac{J}{m_a}=v_a-(j_n\cdot n+j_t\cdot t)\frac{1}{m_a} \\ v'_b=v_b+\frac{J}{m_b} =v_b+(j_n\cdot n+j_t\cdot t)\frac{1}{m_b} \end{aligned}\]
\[(v_a'-v_b') = (v_a-v_b)+J(\frac{1}{m_a}+\frac{1}{m_b})\]
which can be expressed as:
\[v_{ab}' = v_{ab}+J(\frac{1}{m_a}+\frac{1}{m_b})\]
Dcompose velocity
\[v=v\cdot n+v\cdot t\]
Decomposition J
\[J=j_n\cdot n+j_t\cdot t\]
\[v'_a\cdot n=\left( v_a-\left[ \frac{j_n}{m_a}n+\frac{j_t}{m_a}t \right] \right)\cdot n=v_a\cdot n-\frac{j_n}{m_a}\]
\[v'_b\cdot n=\left( v_b+\left[ \frac{j_n}{m_b}n+\frac{j_t}{m_b}t \right] \right)\cdot n=v_b\cdot n+\frac{j_n}{m_b}\]
Subtracting the preceding two equations results in the following:
\[((v'_a -v'_b)\cdot n = (v_a-v_b)\cdot n - j_n(\frac{1}{m_a}+\frac{1}{m_b})\]
Given how we have defined relative velocity the above equation simplifies to:
\[v'_{ab}\cdot n = v_{ab}\cdot n - j_n\left( \frac{1}{m_a}+\frac{1}{m_b} \right)\]
Given the definnition of the coefficient of restitution,
\[v'_{ab}\cdot n=-e(v_{ab}\cdot n) \]
we can say that:
\[-e(v_{ab}\cdot n)= v_{ab}\cdot n-j_n\left( \frac{1}{m_a} +\frac{1}{m_b} \right)\]
Collecting the terms and solving for j(n), the impulse in the normal direction result in the following:
\[j_n=\frac{(1+e)(v_{ab}\cdot n)}{\frac{1}{m_a}+\frac{1}{m_b}}\]
\[j_t=\frac{(1-f)(v_{ab}\cdot t)}{\frac{1}{m_a}+\frac{1}{m_b}}\]
0 件のコメント:
コメントを投稿