Given two vectors of size \( m\times 1\) and \( n\times 1\)respectively
\[\mathbf {u} ={\begin{bmatrix}u_{1}\\u_{2}\\\vdots \\u_{m}\end{bmatrix}},\quad \mathbf {v} ={\begin{bmatrix}v_{1}\\v_{2}\\\vdots \\v_{n}\end{bmatrix}}\]
their outer product, denoted \( \mathbf {u} \otimes \mathbf {v}\) , is defined as the \( m\times n\) matrix \( \mathbf {A}\) obtained by multiplying each element of \( \mathbf {u} \) by each element of \(\mathbf {v}\):
\[\mathbf {u} \otimes \mathbf {v} =\mathbf {A} ={\begin{bmatrix}u_{1}v_{1}&u_{1}v_{2}&\dots &u_{1}v_{n}\\u_{2}v_{1}&u_{2}v_{2}&\dots &u_{2}v_{n}\\\vdots &\vdots &\ddots &\vdots \\u_{m}v_{1}&u_{m}v_{2}&\dots &u_{m}v_{n}\end{bmatrix}}\]
Or in index notation:
\[(\mathbf {u} \otimes \mathbf {v} )_{ij}=u_{i}v_{j}\]
The outer product \(\mathbf {u} \otimes \mathbf {v}\) is equivalent to a matrix multiplication \(\mathbf {u} \mathbf {v} ^{\operatorname {T} }\), provided that \(\displaystyle \mathbf {u} \) is represented as a \( m\times 1\) column vector and \( \mathbf {v} \) as a \( n\times 1\) column vector (which makes \( \mathbf {v} ^{\operatorname {T} }\) a row vector).
For instance, if \( m=4\) and \( n=3,\) then
\[ \mathbf {u} \otimes \mathbf {v} =\mathbf {u} \mathbf {v} ^{\textsf {T}}={\begin{bmatrix}u_{1}\\u_{2}\\u_{3}\\u_{4}\end{bmatrix}}{\begin{bmatrix}v_{1}&v_{2}&v_{3}\end{bmatrix}}={\begin{bmatrix}u_{1}v_{1}&u_{1}v_{2}&u_{1}v_{3}\\u_{2}v_{1}&u_{2}v_{2}&u_{2}v_{3}\\u_{3}v_{1}&u_{3}v_{2}&u_{3}v_{3}\\u_{4}v_{1}&u_{4}v_{2}&u_{4}v_{3}\end{bmatrix}}\]
Useful References
Outer product - Wikipedia
0 件のコメント:
コメントを投稿